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In DSC's the shape of the interpolated baseline under a peak is determined by a change 
in the heat capacity of the sample and the heat transfer characteristics between sample and 
temperature sensor. The interpolated baseline is constructed according to formal criteria, 
experimentally or analytically on the basis of physico--chemical assumptions on the change of 
the heat capacity during transition. By the example of the melting of ice this paper shows 
analytically on the basis of a simple calorimeter model and a synthetic measuring curve, and 
experimentally, that the uncertainty of the enthalpy determination depends in general on the 
type of baseline and is in the order of magnitude of the repeatability of the DSC's (• 

1 .  I n t r o d u c t i o n  

In Differential Scanning Calorimetry (DSC) the baseline must be known 
in order that the 
- enthalpy (from the peak area between measured curve and baseline), 
- heat capacity (from the difference between the baselines recorded with 
and without sample), 
- transition temperature of sharp (first-order) phase transitions (by ex- 
trapolation of the ascending or descending slope of the endothermic or ex- 
othermic peak, resp., to the extrapolated initial baseline) 
can be determined. 

Various methods of baseline construction are described and recom- 
mended in the literature. In the evaluation software DSC manufacturers also 
offer various options for the baseline construction, but generally a straight 
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1 4 5 6  HEMMINGER, SARGE: THE BASELINE CONSTRUCTION 

line between peak start and peak end is used. The influence of changes in 
the sample's heat capacity or heat transfer characteristics is not, however, 
taken into consideration. 

In the following it is shown, that when different methods of baseline con- 
struction are applied in the enthalpy determination of first-order transitions, 
a systematic error may occur which is equal to the repeatability of the in- 
struments. 

2. Definitions and terms 

Fig. 1 shows the terms used for the description of the measured curves 
and explained below. 

peak 
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r ~ final 
01 init ial baseline 

~ baseline 
13.1 zero line 
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time ( temperature)  :" 
Fig. t Explanation of terms (schematic curve for a first-order phase transition). Ordinate: 

measured signal of the calorimeter (heat flux difference or temperature difference), 
abscissa: time or temperature. ~ peak start, tp peak extremum, tf peak end 

Measured curve: Trace of the measured signal as a function of time or 
temperature (furnace temperature or sample-sensor temperature) 

Zero line: Curve measured by the instrument without sample, reference 
sample. 

Baseline: Curve measured by the instrument with sample and reference 
d/-/ 

sample, while no reaction heat flow ~ is liberated in the sample and the 
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curve interpolated in the region of the peak which reflects the reaction of 
the measuring system to all changes of the sample with the exception of the 
heat produced or consumed due to a transition 

Peak: Curve measured during liberation of a heat due to a transition in 
the sample 

Peak start ti: Initial deviation of the measured signal from the baseline in 
the region of the peak 

Peak extremum tp: Maximum difference between interpolated baseline 
and peak 

Peak end tf: Final deviation of the measured signal from the baseline in 
the region of a peak 

The zero line reflects the asymmetry of the instrument with respect to the 
heat capacities of the supports of sample and reference sample, including 
the respective temperature sensors, and to the heat transfer from the fur- 
naces to the supports of sample and reference sample. 

The baseline corresponds to the signal which sample and reference 
sample develop only because of the difference between their heat capacities 
(containers are neglected). 

When no reaction heat is released, the baseline is the measured curve. 
However, when reaction heat is released in the sample, the instrument 
records a peak. The baseline in this region is first unknown and must be 
somehow interpolated from the shape of the initial and final baseline or 
must be determined by other means. 

3. Thermodynamic aspects 

The first law of thermodynamics describes the enthalpy H of a system as 
a function of the variables of state: pressure p, temperature T and composi- 
tion ~: 

H = H 07, T, ~) (1) 

The total differential is: 

OH OH OH 

For isobaric processes the following is valid: 

(2) 

J. Thermal Anal., 37, 1991 



1 4 5 8  HEMMINGER, SARGE: THE BASELINE CONSTRUCTION 

dH = 6q (3) 

Calorimetrically, the differential heat c3q is measured which is: 

6q = [(-~-p) V] ( -~)  (0-~) - T,~dp + dT+ pg  p,T 
(4) 

For the second term in Eq. (4), withp, ~ = constant, 

( -~)  P,~ = Cp (T) (5) 

is valid by definition, where Cp is the heat capacity of the system at constant 
pressure. 
The third term in Eq. (4), 

OH) = AH (6) 
o-/f T,p 

is the isothermal and isobaric enthalpy change, for example due to a phase 
transition (/X/' /--Atrsn),  a mixing effect (AH---AmixH) or  a reaction 
(an-&./-/). 

(Superimposed effects, e.g. melting of a substance of eutectic impurity, 
with its heat of mixing superimposed on its heat of fusion will not be dis- 
cussed here.) 

In the following considerations it will be assumed that a calorimeter 
measures the enthalpy difference as heat (t9 = constant). All other energy 
forms (surface energy etc.) are not taken into consideration. 

As an example, the enthalpy and heat capacity of a substance are shown 
in Fig. 2. 

Higher-order phase transitions are not connected with an enthalpy of 
transition; in this case the measured curve is the baseline. First-order phase 
transitions take place isothermally, the heat capacity is discontinuous and 
shows a step. In thermally activated chemical reactions the heat capacity 
changes continuously as a function of the fraction transformed during the 
reaction. 

The problem is to assign changes in the sample's heat capacity in the 
region of the peak to the correct shape of the baseline. 
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- . . . . .  

b) oo oo fhermQtty ncfivol'ed 
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IQmbda 
transifion �9 

T 
Fig. 2 Enthalpy (a)) and heat capacity (b)) of a substance as a function of temperature 

H enthalpy, Cp heat capacity at constant pressure 

4. Theoretical, ideal baselines 

According to the change of the heat capacity during phase transi- 
tions/reactions, a distinction can be made between 4 cases as far as the 
shape of the baseline under a peak is concerned: 

J.. Thermal AnaL, 37, 1991 
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1. The enthalpy production of the sample, I ~ - } '  is zero (Fig. 3). This 
X / 

case applies e. g. to lambda transitions or pure heat capacity measurements; 
then the 'baseline' is the measured curve. 

AP 

Agt = Cd'3* dAP= , ,  

J zagt 
r 1 

f t:~ 

Fig. 3 Shape of the baseline for transitions without enthalpy production. The equation of the 
baseline, APb| (t), describes the relation between the measured signal of a power 
compensation DSC and the change of the sample's heat capacity as a function of time 
(el. 5.2). APbl equation of the baseline related to the zero line (measured curve minus 
zero line), AP measured signal, t time, Cs heat capacity of the sample, fl heating rate, 
time constant of the measuring system 

2. The heat capacity of the sample, Cs, remains constant (Fig. 4): 

Cs" = Cs' ; ACs = 0 (7) 

Cs" : heat capacity of the high-temperature phase 
Cs' : heat capacity of the low-temperature phase 
ACs = Cs" - Cs' : heat capacity difference 

This case is trivial. The interpolated baseline under the peak is simply 
the extrapolated initial baseline which merges into the final baseline. 

3. The heat capacity of the sample, Cs, changes continuously and propor- 
tional to the degree of conversion, a, (Fig. 5): 

Cs = ( 1 - a ) C s '  + aCs"  (8) 
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AP 

APb, : Q'/2= C;'/3 = constant  

I za& 

t 
Fig. 4 Shatx{. of the baseline for transitions without heat capacity change. APbl equation of the 

initial, interpolated and final baseline related to the zero line, A P measured signal, t 
time, Cs', Cs" heat capacity of the low and high temperature phase, resp., fl heating rate 

This assumptions valid e. g. for chemical reactions or, according to Van't 
Hoff 's  law, for the melting of eutectic systems above the eutectic tempera- 
ture. 

4. The heat capacity of the sample changes suddenly upon transition 
(transition temperature  Ttrs), e. g. in first-order phase transitions: 

I Cs' for T < Ttrs ( t  < ti) 
Cs = for T = Ttrs ( t = ti ) 

[Cs" for T > T t r s  ( t > t i )  
(9) 

The sample temperature  is constant during first-order phase transitions. 
Below the transition temperature  the heat capacity of the sample is given by 
the low temperature phase, above the transition temperature by the high 
temperature  phase. This heat capacity change, ACs(T) = Cs"(T) -Cs'(T), is 
described as a function of temperature  by a step function at T = Ttrs. By the 
'RC elements '  (el. Fig. 7) of the calorimeter (measuring system) this step 
function is t ransformed into an exponential function (function of time). This 
exponential function starts at ti and reaches the final baseline at tf, it repre- 
sents the interpolated baseline. The peak area - and thus the transition en- 
thalpy - are given by the area between the measured curve and the 
calculated baseline in the region of the peak (Fig. 6) [2-4]. 

s Thermal AnaL, 37, 1991 
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Fig. 5 Shape of the baseline for transitions with the heat capacity change proportional to the 
degree of conversion. APbl equation of the initial, interpolated and final baseline 
related to the zero line, AP measured signal, t time, a degree of conversion, Cs', Cs" 
heat capacity of the low and high temperature phase, resp., fl heating rate, C4 heat 
capacity of sample container, R heat resistance between sample and sample-temperature 
s e n s o r  

5. Baseline construction, calorimeter model and peak analysis 

The methods for the construction of the baseline, which are used in prac- 
tice, can be divided into 3 groups: 

1) Formal methods without physieo-chemical justification 
2) Methods where physieo-chemieal assumptions on the change of the 

heat capacity during transition are made (cf. 4) 
3) Experimental methods 
In the following it will be shown analytically and experimentally what sys- 

tematic errors may occur in the peak integration (enthalpy determination) 
with differently constructed baselines. 

The melting of ice is used as an experimental example. A theoretical 
DSC curve is constructed as the ' true' measured curve using a model  DSC 
(el. 5.1). The various methods of baseline construction taken from the litera- 
ture are analytically and numerically applied to this curve to determine the 
resulting systematic measurement error. For this purpose a simple model  of 
the calorimeter used must be developed. 
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Fi~ 6 Shape of the baseline for flint-order phase tra~ition.s APbl equation for the 
interpolated baseline related to the zero line, AP measured signal, t time, ti peak start, 
tp peak extremum, tf peak end, Cs', Cs" heat capacity of the low and high temperature 
phase of the sample, resp., fl heating rate, A Cs = Cs" - C 's', ~" time constant of the 
measuring system for Cs -- Cs" 

5.1 Calorimeter model 

The model is to describe in simple terms the essential properties of the 
calorimeter used, a power compensation DSC. 

The surroundings of the calorimeter (Fig. 7) is at constant temperature 
To and contains sample and reference sample measuring system. These sys- 
tems (1 and 2) comprise the heat capacity C, the temperature sensor to 
measure the temperature T, the heating element with the electrical power P 
and the sample support. The containers for sample and reference sample 
with heat capacities C3 and C4 (C3 = C4 - C) and at temperatures T3 and 
T4 a re  connected to these supports via the heat resistances R1 and R2 (R1 = 
R2 - R). The sample container accommodates the sample with heat capacity 

Cs, enthalpy production (--&d~--) and temperature Ts. There should be no heat 

resistance between sample and container, therefore the container is always 
at sample temperature. The heating powers P are controlled in such a way 
that the temperature sensors undergo a linear temperature change. 

J. Thermal AnaL, 37, 1991 



1 4 6 4  HEMMINGER, SARGE: THE BASELINE CONSTRUCTION 

I R' 
r,4 w / 

k., J ~. J 
Y 

reference sammple sampl~ysfem 
sysfem 1(,!) 

Fig. 7 Model of a power compensation differential scanning calorimeter (for explanations ef. 
text) 

The measured signal of the calorimeter is the temperature difference 
T2-T1 which corresponds to a difference in heating power P2-P1 = AP. With 
the reference sample container empty, this difference is [1]: 

AP = ( .d~-//+Csfl- (C4 +Cs)R d A P  (10) 
tat) dt 

the product (C4 +Cs)R being interpreted as the time constant r of the 
measuring system with sample. 

Thus the measuring system is described by a simple differential equation. 
It depends on the enthalpy production of the sample, its heat capacity, the 
heating rate and the change of the measured signal multiplied by the time 
constant of the system. The time constant consists of the product of the heat 
capacities of sample and container and the heat resistance between heating 
element and container. 

(Under steady-state conditions, AP = constant, the influences of the two 
containers compensate each other (C3 = C4); therefore only Csfl appears in 
Eq. (10). The non-steady-state conditions during a transition in the sample 
affect only the sample and its container (Cs and C4); therefore the sum (C4 
+ Cs) appears in the term of Eq. (10) which describes the influence of the 
non-steady-state.) 
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Fig. 8 Analysis of a peak of a first-order phase transition, a) partial areas b) partial areas 
obtained by using an exponential function as interpolated baseline 
AP measured signal, t time, r~ peak start, tp peak extremum, A partial areas, fl heating 
rate, Us', Cs" heat capacity of the low- and high temperature phase of the sample, resp., 
A CA = Cs" - Cs', C4 heat capacity of the sample container, R heat resistance between 
sample and sample-temperature sensor 

The  d e p e n d e n c e  d e s c r i b e d  in Eq .  (10) is ana logous ly  valid for  hea t  flux- 

D S C ' s  w h e r e  the  d i f f e r ence  b e t w e e n  the  hea t ing  powers ,  AP, is to  be  
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replaced by the quotient of temperature difference and heat resistance, 
AT/R [21. 

5.2 Peak analysis 

Using Eq. (10) which is valid for the model described above, the follow- 
ing equations are formally obtained for the shape of the AP (t) curve for 
first-order phase transitions including a change in the heat capacity (el. 
Fig. 8). 

Integration of the differential equation (10) yields the shape of the 

measured curve for t < ti, Ts< Ttrs, [ a--~71 = 0 (cf. [5], Eq. (5)): 

A P  = Cs, fl ( 1 -  e - t / ~ ' )  (11) 

(3' time constant for Cs = Cs') 
The exponential part disappears with increasing time. The shape of the 

initial baseline is then given by: 

A e = Cs'fl (12) 

During transition, the temperature of the sample remains constant. Now, 
an expression for AP is needed. According to ref. [4], Eq. (8) it is for the 

/ . _ _ x  

of the peak for ti --% t < tp, Ts = Ttrs = constant, I--~--~l ;e 0: shape 

a e  = + t i )  (13) 

From this it follows for the ascending slope of the endothermie peak: 

daP_fl_ 
tit R 

(14) 

After the end of the transition the peak merges exponentially into the 
final baseline (Eq. (10)). Again according to [4] Eq. (9) it is for 

t > t p ,  T s>T t r s ,  ( -~ )  =0: 
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A P = C s " f l +  ( ~ R ( t p - t i ) - A C s f l ) . e - ( t - t p ) / ~ "  (15) 

(r" time constant for Cs = Cs") 
Insertion of (13) and (14) in (10) and integration from ti to tp give the 

transition enthalpy AH: 

t~ 
A H = f ~--~- dt = ~ ( tp - ti )2 + ( C4 + Cs' ) fl ( tp - ti ) 

ti Ot 
(16) 

The time necessary for the transition, tp-ti, is calculated from (16) (cf. 
[5], Eq. (11)): 

( t p - t i ) = - R ( C 4 - C s ' ) +  X/[R(C4+C~')]2+~ AH (17) 

Eq. (16) describes a triangle and a rectangle between ti and tp (Fig. 8a). 
Since it is characteristic of the exponential function that the integral from 
0 to oo is equal to the ordinate section, y0, multiplied by the time constant 

(So / YO e t/~dr yo~ the area of the rectangle ( C4 + Cs' ) fl (tp - ti) 

--- ( c4  + c~"  ) ~ ( tp - ti ) - A A ~ ( tp - ti ) (Eq. (16)) with C.~' -- Cs" - A C~ 

can be partially replaced by using the area of the exponential function (tt2) 
between tp and ~ above the extrapolated final baseline. 

Figure 8b shows the peak and the equations far the partial areas con- 
sidered here. The area under the exponential function (A2) between tp and 

. o  

~ is given by (with yo = -~ ( tp - ti ) - fl A Cs and �9 = R ( C4 + Cs" )): 

.a2 = (c4 + c s " ) r  (tp - t i )  - /~ A Csn (C4 + C,~") (18) 

The second term of this equation is contained in A3, the area between 
the baseline (an exponential function, of. 4.4 and Fig. 6), the extrapolated 
final baseline and the ascending slope of the peak: 

A3 = f l A C s n  ((74 + Cs") - 2 f l R A C ]  (19) 

The a reaAi  is: 

z Thermal AnaI, 37, 1991 



1 4 6 8  HEMMINGER, SARGE: THE BASELINE CONSTRUCTION 

AI= ~- -~( tp - t i )2 -~ACs( tp - t i )  +~t~RAC 2 (2o) 

which contains the second term of the rectangle area ACs/5(tp-ti). 
The transition enthalpy according to Eq. (16) is now given by the sum of 

the partial areas, 

&H=AI+A2+A3=~--~ (tp - ti) 2 - flACs (tp - ti)+fl ((74 + Cs") (tp - ti) (21) 

as the sum of the area between measured curve (peak) and extrapolated 
final baseline plus the area between ascending slope of the peak, extrapo- 
lated final baseline and an exponential function which would describe the 
curve if no heat of transition had been released, i.e. the interpolated 
baseline. 

So, finally the peak analysis showed that AH is indeed represented by the 
'peak area'. 

Analysis of the melting peak of ice 

The melting of ice was measured by means of a power compensation 
DSC (DSC-2C, Perkin-Elmer Corp., Norwalk, CT, USA). The experimental 
parameters and results are listed in Table 1. 

Figure 9 shows the experimental melting peak together with the curve 
calculated on the basis of the parameters of Table 1 and Eq. (11) (first part 
of measured curve and initial baseline, t < ti), Eq. (13) (ascending slope of 
the peak, ti < t < tp), Eq. (15) (descending slope of the peak and final 
baseline, t > tp) and Eq. (17) (duration of the ascending slope of the peak). 
The deviations between experimental and theoretical curve show that the 
model  describes the reality only approximately. However, this model  is a 
sufficient good compromise for the intended purpose,  i. e. the analytical 
description of a measured curve. (The analysis of more complex calorimeter 
models requires mathematical approximations [13] or numerical procedures 
[201). 

This calculated, analytically representable (curve 'synthetic measured 
curve') is used in 6.1 to determine the relative errors of the peak areas due 
to the use of different baselines which avoids the difficulties that would arise 
by us ingan  actually measured curve with no simple mathematical descrip- 
tion. An exponential function with ~r = 5.4 s (cf. Table 1) is used as the' true'  
baseline (eL 5.2). 
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Table 1 Melting of ice (experimental parameters and results) 

Sample mass 

Heating rate 

Enthalphy of fusion 
[151 
Heat capacity of ice 
(O~ [16] 

Heat capacity of 
water (0~ [17] 
Heat capacity change 

Heat resistance 
'Fine constant 

Duration of the peak 

Heat capacity of the 
container 

Duration of melting 

Partial areas: 

m = 4.650 

fl = 5 
AfusH = 6.007 

Cp' = 37.9 

Cp" = 76.0 

ACp = 38.1 

R = 100 
lr = 5.4 

t f - t i  = 106 

C4 = 34.4" 10 -3  J "K -1 

mg 

K.min -1 

kJ. tool -1 (AfusH= 1.55 J) 

J ' K  - l ' m o l - l ( C s ' =  9.8"10 -3  J . K  "1) 

J" K -1" tool -1 (Cs" = 19.6" 10 -3 J- K -1) 

J" K -1" mo1-1 (ACs = 9.8" 10 -3 J" K -1) 

K 'W -1 (meas. ace. to Eq. (14)) 

s (meas. ace. to Eq. (15)) 
8 

(ealc.) 

tp-ti = 56.8 s 

~ (tp--ti) 2 = 1.34 J 

fl(C4+Cs") (tp-~ti) 0.26 J 

fl ACsR(C4+CS a) 4.4.10 -3  J 

flACs (tp-ti) = 4.6-10 -2 J 

(talc.) 

~flR AC 2 = 4.0" 10 -4 J 

6. Determination of  the relative errors 

Relative errors can in principle be determined only for the formal 
methods (6.1). For the other methods, only estimates or influencing factors 
can be given. 

6.1 Formal methods 

The table below (Table 2) shows the relative errors which result when 
various formal methods of baseline construction are applied analytically to 
the calculated curve (rel. error (analyt.)) and numerically to the experimen- 
tal curve (rel. error (num.)). 

It is assumed that the true baseline can be represented by an exponential 
function (of. 4.4 and Fig. 6) which is the correct baseline for the melting of 
ice. For comparison, the error is also given which is due to the use of a 

J. Thermal Anal., 37, 1991 
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Table 2 Relative error of the enthalpy of the melting of ice due to different baseline constructions 
(relative to an exponential function taken as the 'true' baseline) 

Method Representation reL error (anal~) 

a) e-function tX/'/exp-~r-/true 
('true' ' &/'/true 
baseline) 
[2,3] 

b) straight 
line 
[101 

e) step 
[81 

d) polygon 
[9] 

e) inter- 
section 

f) inter- 
section 
+ triangle 
[81 

g) parabola 
[11 

h) 'thermo- 
dynamic' 
t61 

i) propor- 
tionalto 
degree of 
conversion I 
[7] 

= 0 

: 

*, AC(x ~ = 

=-ACs# AH 

' t  

"-ACsfl AH 

. . _  IT#R 

T 

= - a C ,  fl A H  = 

,,, t 

reL error (num.) 

0 

0.027 0.008 

0.032 0.020 

0.016 0.016 

= -0.003 -0.012 

= -0.003 -0.007 

0.021 0,003 

-0.003 -0.002 

0.016 
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baseline proportional to the degree of conversion (method i) (in Table 2, cf. 
4.3 and Fig. 5). 

50 

mW 

t~O 

dH 
df 20 

10 L 
- \ 

r 

exp. curve 

ccz|c, curve ~ 

I I I I 

-20 -10 0 10 ~ 20 

Fig. 9 Experimental and calculated melting curves of ice 

The numerical values refer to the experiment on ice described in 5.3. 
The identical results for the analytically determined relative errors of 

method e), f), and h) show that the influence of the small triangle (lflRACs 2, 
cf. Table 1) on the area determination is negligible. 

Table 3 shows the errors determined analytically (calculation of the peak  
area between 'synthetic measured curve' and baseline) and experimentally 
(integration of the peak area between measured curve and baseline) which 
result when a straight line is used as baseline instead of an exponential func- 
tion (for some calibration materials). 

Under the experimental conditions chosen (heating rate, sample mass), 
the relative error can be as high as 0.2% for these metals and is therefore 
within the repeatability range of the instrument used. 

The discrepancies between the analytically and numerically determined 
relative errors can be attributed to the difficulties in the definition of the 
peak start and peak end as the initial and final deviation of the measured 
(noisy) curve from the baseline. The deviations of the experimental curve 
from the calculated curve, especially for the smooth transition from the ini- 
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tial baseline to the ascending slope of the peak instead of the assumed dis- 
continuity, contribute to these discrepancies, too. 

Table 3 Relative errors due to the use of a straight line instead of an exponential function for a few 
calibration materials (fl = 5 deg.min -1) 

Material Afustt, ACp Ref. m, R, 
kJ'mo1-1 J ' m o l - l - K  -1 mg K-W -1 

Ga 5.586 2.05 [11] 5.412 101 

In 3.283 -0.33 [12] 18.788 84 

Sn 7.195 -2.29 [13] 8.270 84 

Bi 11.131 0.57 [14] 7.902 109 

Pb 4.772 1.21 [15] 22.402 109 

Zn 7.28 2.04 [18] 4.332 157 

�9 , Rel. error, % 

S analyt, num. 

3.07 0.087 -0.22 

3.21 -0.025 -0.02 

2.71 -0.071 -0.12 

2.59 0.009 -0.13 

2.73 0.062 -0.21 

3.00 0.078 0.25 

6.2 Experimental methods 

The experimental methods for baseline interpolation are based either on 
repeat measurements with inert or reacted samples or on independent 
simultaneous measurements. 

6.2.1 Measurement with inert sample 

A repeated measurement with an inert sample whose Cp(T) curve is as 
similar as possible to that of the sample can provide information on the (ap- 
proximate) shape of the interpolated baseline. Influences due to the 
temperature dependence of the instrument's heat resistances and heat 
capacities are corrected by subtracting this measured reference curve from 
the measured curve. 

As a result, the definition of peak start and peak end becomes easier, 
too. 

In some eases it is more favourable to use the irreversibly reacted meas- 
urement sample as inert sample, e. g. for the measurement of the 'stored 
energy', i. e. the annealing of lattice defects of plastically deformed metals 
by means of DSC. 

Samples with supercoolable transition offer another possibility. For ex- 
ample, after melting, high-purity materials can be supercooled as melts 
below the melting temperature so that they can serve as an 'inert sample' in 
the repeat measurement (with a small difference in Cp compared with the 
solid material, of. Table 3). 
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The uncertainty due to the repeatability of the initial and final baselines 
contributes to the total uncertainty of the baseline construction. This uncer- 
tainty amounts to approximately ---20/~W for the instrument used [10]. In the 
experiment under consideration, this may in the worst case result in a rela- 
tive error of _+1-10 -3. 

6.2.2 Measurement with reacted sample 

When the Cp change of irreversible or supercoolable transitions is not 
due to the transition but to other effects (e. g. lambda transition, glass tran- 
sition), the baseline may be constructed with the reacted sample. The uncer- 
tainty of this method depends on the factors mentioned in 6.2.1. 

6.2.3 Use of the results of simultaneous measurements 

The interpolated baseline may be constructed on the basis of the initial 
and final baselines when the function of the degree of conversion in reac- 
tions with continuous change of the heat capacity is known from other meas- 
urements (e. g. for reactions with a change in mass when a simultaneous 
TG/DSC is used, by optical (simultaneous TOA/DSC) or other (e. g. 
spectroscopic) experiments). In this case the interpolated baseline is a rep- 
resentation of the function of the degree of conversion a(t) between the ini- 
tial baseline (a(ti) = 0) and the final baseline (a(tf) = 1). 

The uncertainty of this method is determined by the uncertainty of the 
techniques simultaneously used. It should be borne in mind that optical or 
spectroscopic methods furnish information only about a selected region of 
the sample whereas the DSC signal is a volume-integrated signal. 

6.3 Numerical methods 

The numerical methods are based on strict assumptions on the change of 
the heat capacity during transition. In general, these assumptions are only 
insufficiently met during experiments, which is the reason why the uncertain- 
ty is essentially given by the deviation from the assumed ideal behaviour. 

6.3.1 Method applied when the function of the degree of conversion is 
known 

When the function of the degree of conversion is known from theoretical 
considerations (e. g. chemical reactions, eutectic melting, first-order phase 
transition of a pure substance etc.) the baseline under the peak can be cal- 
culated from the heat capacities of the low and high temperature phases of 
the sample, which are known from the shape of the initial (APbl = Cs'fl ) and 
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final baseline (Aebl = Cs"~ ). According to 4.3, Eq. (8) the baseline (re- 
lated to the zero line) is: 

tWbl ( t )  = Cs = ( 1 - a ) Cs'/  + a "  Cs"/  (22) 

6.3.2 Iterative method applied when the function of the degree of conversion 
is unknown 

The baseline must be calculated iteratively when the function of the de- 
gree of conversion is neither known from theoretical considerations (6.3.1) 
nor from experiments (6.2.3). For this purpose, first a straight line is as- 
sumed as baseline and with it a function for the degree of conversion is cal- 
culated which enters into the iteration as a second approximation. This 
procedure is repeated until the baseline no longer changes; experience has 
shown that this is the case after 3 to 5 iterations [21]. 

However, this method is suitable only if the change of the heat capacity is 
really a function of the degree of conversion; for example, it is not ap- 
plicable to the melting of a pure substance. 

7. Uncertainty of the baseline construction 

Even if the baseline can be constructed on the basis of a known function 
of the degree of conversion, its shape is still affected by uncertainties. It fol- 
lows from the analysis of the calorimeter model that apart from changes in 
the sample's heat capacity a change of the thermal coupling of the sample to 
the temperature sensor due to altered heat transfer characteristics influen- 
ces the shape of the baseline. In particular during the solid/liquid transition, 
the heat resistance between sample and container changes drastically which 
is the reason why the determination of the baseline is affected by a cor- 
responding uncertainty. A change in the radiation characteristics (emis- 
sivity) of the sample influences the baseline in principle in the same way. 
For the overall uncertainty of the baseline in the region of the peak the ex- 
perimentally determined repeatability of the initial and final baselines must 
also be taken into account. 

In thermally activated chemical reactions, even at low temperature, the 
reaction rate and therefore the enthalpy production are in principle not 
equal to zero. The initial baseline therefore merges slowly into the peak, 
which results in the determination of the initial baseline as well as ti being 
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affected by an uncertainty. In practice, there is an additional problem that in 
the final region of the measured curve a decomposition reaction may be su- 
perimposed on the baseline. 

Another problem not dealt with here is bent initial and final baselines, 
which reflect the temperature dependence of the heat capacities and heat 
transfer characteristics of measuring system and sample. In these eases 
linear extrapolation of the initial and final baselines is not applicable, but an 
extrapolation commensurate with their respective shape must be made 
(polynomial representation for initial and final baselines (cf. 4.2 and 6.3.1)). 

8. Instrument and experimental parameters and their effects 

The preceeding chapters show clearly that during a transition the 
baseline shift (flACs, of. Fig. 8) depends on instrument and experimental 
parameters and may thus be influenced, i. e. minimized, by the operator. 

From Eqs (12) and (15) it follows for the ACs - signal APAC,: 

aPac.  = #acs ,  (23) 

i .  e .  

~PACs ac (~m 

The peak height APtp (height of the triangle Az in Fig. 8b) is given by 
Eq. (13) with (17): 

a e ,  p c , ,  r + ( tp - ti ) --- = R ( 2 4 )  

io e ,  

For the relation of peak height, Eq. (24), to baseline shift, Eq. (23), it fol- 
lows: 
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Cv--a____ 

 Ac, 

To maximize the relation between peak height and baseline shift it is 
favourable to choose a low heating rate t5 and a small sample mass m. The 
heat resistance R should be as small as possible. To keep the time constant 
of the instrument small, the heat capacity of the container and its support 
should be small. 

These conditions also lead to a better repeatability of the initial and final 
baselines. 

9. Conclusions 

The construction of a straight line between peak start, ti, and peak end, 
tf, as the baseline is the simplest method and recommended in all that cases 
where no additional information about the transition is known. For the ex- 
amples presented here the deviation relative to the correct baseline lies 
within the repeatability range of the DSC's (_ 0.5%). Therefore this method 
is to recommend in general even for enthalpy determinations of first-order 
transitions because the total uncertainty of the enthalpy determination 
amounts generally to two to four times the repeatability. Although a straight 
line as the baseline is sufficient for the determination of transition enthal- 
pies, for other purposes (e. g. determination of the degree of conversion by 
means of partial peak integration) it is recommendable to use the correct 
baseline (exponential function as the baseline for first-order transitions) be- 
cause otherwise especially at the beginning of the peak uncorrect values for 
the enthalpy production of the sample may result. 

Should a desmearing (deconvolution) procedure be necessary for the 
reaction under consideration (cf. [10]) the measured curve is to desmear 
before the construction of the desmeared baseline is performed. 
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Zusannnenfassung  - -  In Differential-Scanning Kalorimetern wird die Gestalt der inter- 
polierten Basislinie unter dem Peak durch eine ,~nderung der Wiirmekapazidit der Probe 
und die W~irmetransportcharakteristik zwischen Probe und Temperatuffiihler bestimmt. Die 
interpolierte Basislinie wird nach formellen Kriterien konstruiert, experimentell oder'~ 
analytisch auf der Grundlage yon physikalisch-chemischen Annahmen fiir die .Anderung der 
W~rmekapazit~it wiihrend des Oberganges. Anhand des Beispieles schmelzendes Eis zeigt 
vorliegende Arbeit  auf der Grundlage eines einfachen Kalorimetermodelles und einer syn- 
thetischen MeBkurve analytisch sowie expcrimentell, dab die Ungenauigkeit der Enthal- 
piebestimmung unter anderem yon der Art der Basislinie abh~ingt und dal3 ihr Weft in die 
Gr613enordnung der Reproduzierbarkeit yon Differential-Scanning Kalorimetern liegt 
(0.5%). 
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